411 research outputs found

    High-Throughput Random Access via Codes on Graphs

    Get PDF
    Recently, contention resolution diversity slotted ALOHA (CRDSA) has been introduced as a simple but effective improvement to slotted ALOHA. It relies on MAC burst repetitions and on interference cancellation to increase the normalized throughput of a classic slotted ALOHA access scheme. CRDSA allows achieving a larger throughput than slotted ALOHA, at the price of an increased average transmitted power. A way to trade-off the increment of the average transmitted power and the improvement of the throughput is presented in this paper. Specifically, it is proposed to divide each MAC burst in k sub-bursts, and to encode them via a (n,k) erasure correcting code. The n encoded sub-bursts are transmitted over the MAC channel, according to specific time/frequency-hopping patterns. Whenever n-e>=k sub-bursts (of the same burst) are received without collisions, erasure decoding allows recovering the remaining e sub-bursts (which were lost due to collisions). An interference cancellation process can then take place, removing in e slots the interference caused by the e recovered sub-bursts, possibly allowing the correct decoding of sub-bursts related to other bursts. The process is thus iterated as for the CRDSA case.Comment: Presented at the Future Network and MobileSummit 2010 Conference, Florence (Italy), June 201

    Coded Slotted ALOHA: A Graph-Based Method for Uncoordinated Multiple Access

    Full text link
    In this paper, a random access scheme is introduced which relies on the combination of packet erasure correcting codes and successive interference cancellation (SIC). The scheme is named coded slotted ALOHA. A bipartite graph representation of the SIC process, resembling iterative decoding of generalized low-density parity-check codes over the erasure channel, is exploited to optimize the selection probabilities of the component erasure correcting codes via density evolution analysis. The capacity (in packets per slot) of the scheme is then analyzed in the context of the collision channel without feedback. Moreover, a capacity bound is developed and component code distributions tightly approaching the bound are derived.Comment: The final version to appear in IEEE Trans. Inf. Theory. 18 pages, 10 figure

    A Decoding Algorithm for LDPC Codes Over Erasure Channels with Sporadic Errors

    Get PDF
    none4An efficient decoding algorithm for low-density parity-check (LDPC) codes on erasure channels with sporadic errors (i.e., binary error-and-erasure channels with error probability much smaller than the erasure probability) is proposed and its performance analyzed. A general single-error multiple-erasure (SEME) decoding algorithm is first described, which may be in principle used with any binary linear block code. The algorithm is optimum whenever the non-erased part of the received word is affected by at most one error, and is capable of performing error detection of multiple errors. An upper bound on the average block error probability under SEME decoding is derived for the linear random code ensemble. The bound is tight and easy to implement. The algorithm is then adapted to LDPC codes, resulting in a simple modification to a previously proposed efficient maximum likelihood LDPC erasure decoder which exploits the parity-check matrix sparseness. Numerical results reveal that LDPC codes under efficient SEME decoding can closely approach the average performance of random codes.noneG. Liva; E. Paolini; B. Matuz; M. ChianiG. Liva; E. Paolini; B. Matuz; M. Chian

    Spatially-Coupled Random Access on Graphs

    Full text link
    In this paper we investigate the effect of spatial coupling applied to the recently-proposed coded slotted ALOHA (CSA) random access protocol. Thanks to the bridge between the graphical model describing the iterative interference cancelation process of CSA over the random access frame and the erasure recovery process of low-density parity-check (LDPC) codes over the binary erasure channel (BEC), we propose an access protocol which is inspired by the convolutional LDPC code construction. The proposed protocol exploits the terminations of its graphical model to achieve the spatial coupling effect, attaining performance close to the theoretical limits of CSA. As for the convolutional LDPC code case, large iterative decoding thresholds are obtained by simply increasing the density of the graph. We show that the threshold saturation effect takes place by defining a suitable counterpart of the maximum-a-posteriori decoding threshold of spatially-coupled LDPC code ensembles. In the asymptotic setting, the proposed scheme allows sustaining a traffic close to 1 [packets/slot].Comment: To be presented at IEEE ISIT 2012, Bosto

    On the Growth Rate of the Weight Distribution of Irregular Doubly-Generalized LDPC Codes

    Full text link
    In this paper, an expression for the asymptotic growth rate of the number of small linear-weight codewords of irregular doubly-generalized LDPC (D-GLDPC) codes is derived. The expression is compact and generalizes existing results for LDPC and generalized LDPC (GLDPC) codes. Assuming that there exist check and variable nodes with minimum distance 2, it is shown that the growth rate depends only on these nodes. An important connection between this new result and the stability condition of D-GLDPC codes over the BEC is highlighted. Such a connection, previously observed for LDPC and GLDPC codes, is now extended to the case of D-GLDPC codes.Comment: 10 pages, 1 figure, presented at the 46th Annual Allerton Conference on Communication, Control and Computing (this version includes additional appendix

    Spectral Shape of Check-Hybrid GLDPC Codes

    Full text link
    This paper analyzes the asymptotic exponent of both the weight spectrum and the stopping set size spectrum for a class of generalized low-density parity-check (GLDPC) codes. Specifically, all variable nodes (VNs) are assumed to have the same degree (regular VN set), while the check node (CN) set is assumed to be composed of a mixture of different linear block codes (hybrid CN set). A simple expression for the exponent (which is also referred to as the growth rate or the spectral shape) is developed. This expression is consistent with previous results, including the case where the normalized weight or stopping set size tends to zero. Furthermore, it is shown how certain symmetry properties of the local weight distribution at the CNs induce a symmetry in the overall weight spectral shape function.Comment: 6 pages, 3 figures. Presented at the IEEE ICC 2010, Cape Town, South Africa. A minor typo in equation (9) has been correcte

    Growth Rate of the Weight Distribution of Doubly-Generalized LDPC Codes: General Case and Efficient Evaluation

    Full text link
    The growth rate of the weight distribution of irregular doubly-generalized LDPC (D-GLDPC) codes is developed and in the process, a new efficient numerical technique for its evaluation is presented. The solution involves simultaneous solution of a 4 x 4 system of polynomial equations. This represents the first efficient numerical technique for exact evaluation of the growth rate, even for LDPC codes. The technique is applied to two example D-GLDPC code ensembles.Comment: 6 pages, 1 figure. Proc. IEEE Globecom 2009, Hawaii, USA, November 30 - December 4, 200

    Stability of Iterative Decoding of Multi-Edge Type Doubly-Generalized LDPC Codes Over the BEC

    Full text link
    Using the EXIT chart approach, a necessary and sufficient condition is developed for the local stability of iterative decoding of multi-edge type (MET) doubly-generalized low-density parity-check (D-GLDPC) code ensembles. In such code ensembles, the use of arbitrary linear block codes as component codes is combined with the further design of local Tanner graph connectivity through the use of multiple edge types. The stability condition for these code ensembles is shown to be succinctly described in terms of the value of the spectral radius of an appropriately defined polynomial matrix.Comment: 6 pages, 3 figures. Presented at Globecom 2011, Houston, T

    Spectral Shape of Doubly-Generalized LDPC Codes: Efficient and Exact Evaluation

    Full text link
    This paper analyzes the asymptotic exponent of the weight spectrum for irregular doubly-generalized LDPC (D-GLDPC) codes. In the process, an efficient numerical technique for its evaluation is presented, involving the solution of a 4 x 4 system of polynomial equations. The expression is consistent with previous results, including the case where the normalized weight or stopping set size tends to zero. The spectral shape is shown to admit a particularly simple form in the special case where all variable nodes are repetition codes of the same degree, a case which includes Tanner codes; for this case it is also shown how certain symmetry properties of the local weight distribution at the CNs induce a symmetry in the overall weight spectral shape function. Finally, using these new results, weight and stopping set size spectral shapes are evaluated for some example generalized and doubly-generalized LDPC code ensembles.Comment: 17 pages, 6 figures. To appear in IEEE Transactions on Information Theor
    corecore